

UNIVERSITY OF TRENTO - Italy

Department of Information Engineering and Computer Science

Leveraging Non-Conversational Tasks for Low Resource Slot

Filling: Does it help?

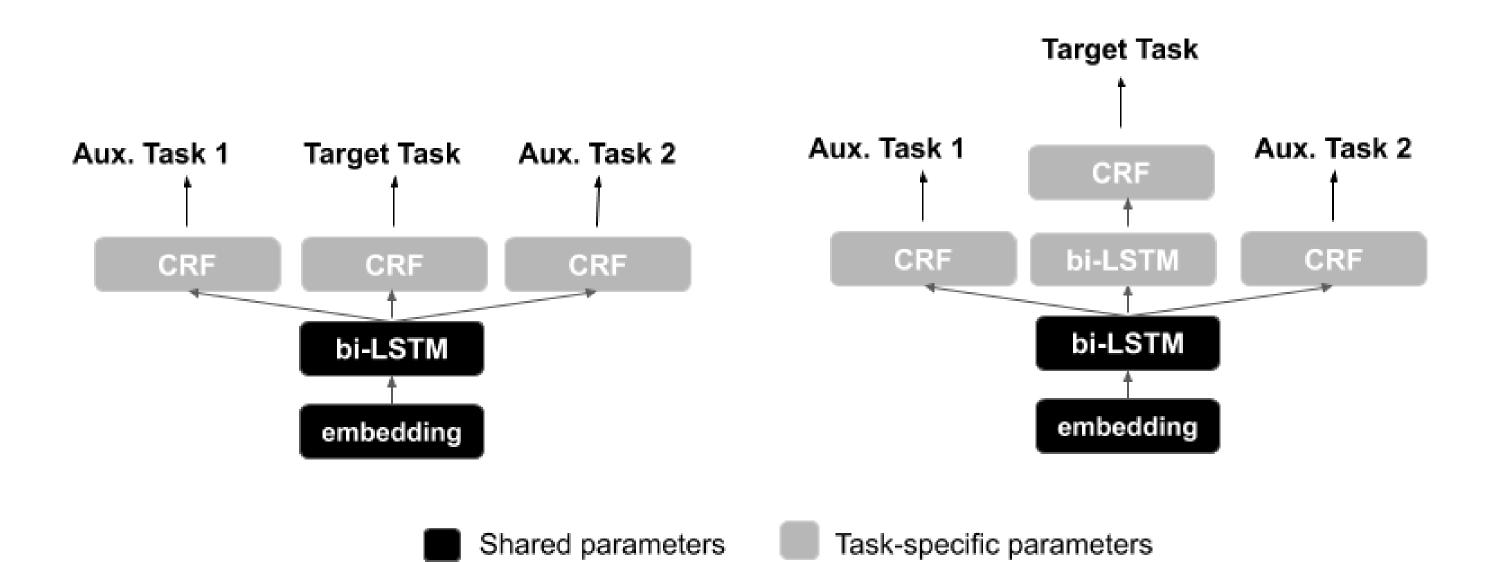
Samuel Louvan^{1,2} and Bernardo Magnini²

{slouvan@fbk.eu, magnini@fbk.eu}

¹University of Trento, ²Fondazione Bruno Kessler

•	•	
	ation	

• Problem: Slot filling datasets used in conversational agents are expensive to obtain being task specific. •Idea: Leverage a more general, cheaper, and semantically related task in a multi-task learning (MTL) setting.


Multi-Task Learning: Target Task + Aux. Tasks

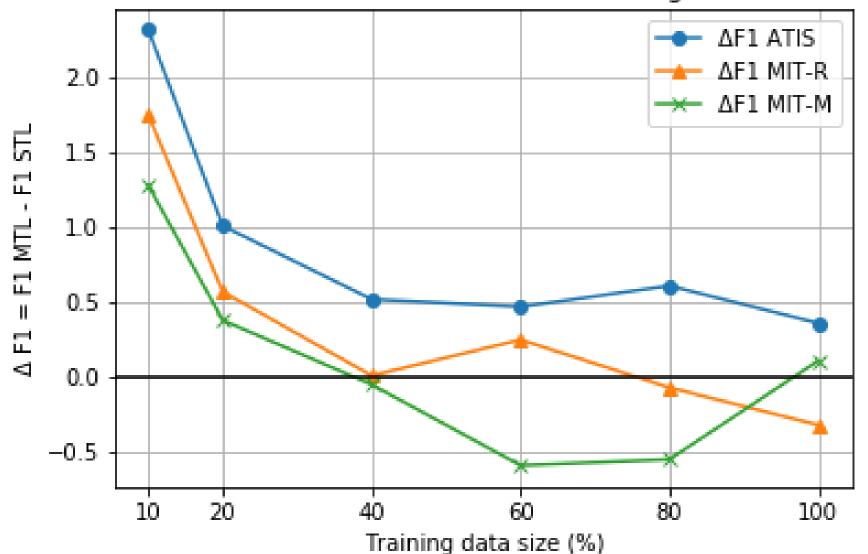
Sentence	what	is	the	most	expensive	flight	from	boston	to	dallas
ATIS Slot (Target Task)	0	0	0	B-COST_REL	I-COST_REL	0	0	B-FROM_LO	CO	B-TO_LOC
NER (Aux. Task)	0	0	0	0	0	0	0	B-GPE	0	B-GPE
SemTag (Aux. Task)	B-QUE	B-ENS	B-DEF	B-TOP	B-IST	B-CON	B-REL	B-GPE	0	B-GPE

•Named Entity (NER) often occurs as slot values. Semantic Tagging (Abzianidze and Bos, 2017) complements NER as its labels subsume NER labels.

• Previous work (Mesnil et al., 2013, 2015; Zhang and Wang, 2016; Gong et al., 2019) incorporate NER through the output of NER systems or ground-truth NER label as features. We learn these features from **disjoint datasets** through MTL.

Experiments and Results

Dataset	Task	#train	#dev	#test	#label
ATIS	Slot Filling	447	500	893	79
MIT Restaurant	Slot Filling	612	1532	3385	8
MIT Movie	Slot Filling	782	1955	2443	12
OntoNotes 5.0	NER	34970	5896	2327	18
PMB	SemTag	67965	682	650	73


MTL-Fully Shared Network (left) and Hierarchical-MTL (right) (Sogaard and Goldberg, 2016; Sanh et.al., 2019)

Statistics about the datasets, reporting the number of sentences in train/dev/test set, and the number of labels. The #train size for slot filling is 10% of the original training data size

Model	Aux. Task	Target Task					
MOUCI		ATIS	MIT-R	MIT-M			
STL	_	87.91 _{0.56}	67.37 _{0.26}	80.71 _{0.63}			
STL+FB	-	$87.79_{0.67}$	$67.27_{0.64}$	$80.56_{0.54}$			
MTL-FSN	NER	89.56 _{0.16}	68.82 _{0.18}	80.77 _{0.13}			
	SemTag	$89.19_{0.26}$	$68.21_{0.71}$	$80.57_{0.32}$			
	NER,SemTag	$89.10_{0.41}$	$68.21_{0.43}$	$79.69_{0.33}$			
H-MTL	NER	89.170.33	69.22 _{1.00}	81.79 _{0.26}			

Target Task	Concept	Мс	del
Talget Task		STL	MTL
ATIS	LOC	$94.74_{0.37}$	95.82 _{0.34}
	ORG	$92.52_{0.89}$	93.37 _{0.29}

ΔF1 of MTL over STL for various training data size

SemTag $88.96_{0.41}$ $69.09_{0.24}$ $81.59_{0.17}$ **NER, Sem Tag** 88.78_{0.37} 68.96_{0.50} 81.15_{0.25}

• Leveraging NER and SemTag through MTL gives improvements over baselines for all target tasks.

• Supervising tasks with coarse-grained labels and fine-grained labels on different layers can be beneficial

MIT-	R I	_OC	$75.29_{0.46}$	$76.02_{0.39}$
MIT-	M I	PER	$85.04_{0.24}$	$84.58_{0.56}$

• MTL improves the performance of slots related to coarse-grained concepts.

• MTL is more useful in very low resource scenarios

Conclusion & Future Work

• Using NER and Semantic Tagging as auxiliary tasks in a multi-task learning setting can improve low resource slot filling. •Non-conversational resources have the potential to help low resource slot filling through transfer learning. Ongoing & Future Work: Data Selection for MTL, Data Augmentation